

Problem set 05

Problem 1

In the 5th chapter of the book is an example (Ex. 5.11 in the 4th edition) about how to calculate the vector potential \mathbf{A} of a rotating uniformly charged spherical shell. Use the results of this example to calculate the magnetic field \mathbf{B} inside a solid sphere with uniform charge distribution ρ . The sphere rotates with a constant angular velocity.

Problem 2

Flat conductor parallel to the x - y -plane with z -coordinates restricted between $z = -a$ and $z = a$ carries a free current density $\mathbf{J} = J_0 \mathbf{a}_x$. The conductor has magnetic susceptibility $\chi_m = 0$. Outside the conductor is a linear magnetic material with susceptibility $\chi_m \neq 0$. Find everywhere \mathbf{H} , \mathbf{B} , \mathbf{M} and the equivalent magnetization currents.

The problem is due Monday February 17 2025 at 20:00