STATISTICAL MECHANICS

Greiner, Neise, Stocker (book, chapter 5)

Microstates, entropy

Ensemble theory -

-microcanonical ..., -canonical ..., -grand ...

Application to physical systems
Harmonic oscillators,

ideal gas, paramagnetism

Quantum statistics
ideal Bose and Fermi gas

Phase transitions




Statistical mechanics

Microcanonical ensemble
ISOLATED SYSTEM

Whole system
variables: E,V, N

Canonical ensemble
Phase I + II -
variables: T, V, N Reservoir

Grand canonical ensemble
Phase I1
variables: T, V, i

Phase Il




Microstates and Entropy (classical)

Phase space: (q,, p,),v=1...3N
6 N dimensional space

Definite point in phase space is one microstate of the system
The phase space trajectory (g, (t),p.(t)) is determined by
OH . OH

Qv = 8]9,/ Pv = — 8(],/

In a closed system
E = H(q,(t),p,(t)) 6N-1 hypersurface in phase space

is conserved along the trajectory




1D Harmonic Oscillator (example)

2d-phase space

2
1
H—p—Jr—kq2

ellipse with E

D
A

/\ ellipse with E+A

: KJ -q

Collection of phase space points
hypersurface in (£, E+ AF) is an ensemble

Phase space volume

Aw:/ dqdp:/ dw
E<H(q,p)<E+AE




Area of a hypersurface

o(F) = / do
E=H/(q,p)

Closed system characterized by (E,V, N)

e VI restricts ¢

e Only microstates on the F-surface are allowed

4

Complicated surface




Thermodynamic limit: V, N — oo

g0 g0

_ABVN L,
E=H(qv,pv)

0o: proportionality constant
Direct calculation of Q) (E,V, N) difficult

Often more convenient to use:

o(E,V, N 1 Ow
Q(E’V’N): ( (o)) ):0'0 8E

with the

— / d3Nq d3Np
H(qu,pv)<E




Entropy

Thermodynamics \
equilibrium state

[ most probable macro State]

0

[ largest number of microstates]

All microstates with same FF have the same probability
(postulate)




Properties of the entropy

Closed system

E = F{ + E5 = const
V =V; + V5 = const
N = Ny + Ny = const

Q(E,V,N) = Q1 (E1, V1, N1)Q2(E2, Va, Na)




Q(E,V,N) = Q1 (E1, V1, N1)Qa(E2, Va, Na)

most probable state: €2 = Qmax, dQ2=0

d€) = Qad)y 4 Q1d )

divide with 2 = Qlﬂg

dInQ) =dln; + dIn 5

Equilibrium

dlnQ) =0 In Q) =1n Qv




Closed system, internal energy U = E

S(E,V,N)=51(F1,Vi,N1) + Sa(Fs, Vo, N>)
dS = dS1 + dSs
equilibrium — dS =0 , S = Snax
Compare !
S(E,V;N) = kInQ(E,V,N)
7
proportional

now macroscopic properties (equation of State ...)

1 8S P 8S w08

T_a—EV,N

T_WE,N

T  ONlgyv



In principle: Calculate €2 from microscopic model —

macroscopic properties (“through S”)

‘Difﬁcult — ensemble theory I

Example: Ideal gas

H(qy,py) =

Calculate the phase space volume

w(E,V,N):/

H(qu apU)SE

d3qu3Np — VN / d3Np




The limit H(q,,p,) < F defines
a 3N-dimensional sphere with radius v2mFE

3N S
ZP?, < (VQmE)
v=1

The volume is




The number of possible microstates is thus

1 dw YN p3N/2

w8 @ T

. (2m)3N/2E3N/2—1

and the entropy

VN 7T3N/2

oo T (%)

S(E,V,N)=kInQ(E,V,N) = kln{

(Qm)3N/2 E3N/2—1}




Use the asymptotic form
Inl'(n) ¥nlnn —n if n>1

and define ¢ = aé/N and use E3N/2-1  p3N/2

3/2
Nmn{V(%mE) }_M(W)
o 1 2
3 V [ 4rmE\>/?
NEdS 4| &
k{2+n<a( 3N ) )}




0S5 3 1 3

N
05| _ Nk oy NkT

WE,N_ vV

So k can be identified as the Boltzmann constant kg
(later o is identified as h°...dim)

But S here is not extensive (purly) (magnbundid)




Gibbs paradox: Two ideal gases A and B same T, p

A B
T,p T,p
Ny, Va | N, VB

(1)  o0)
Stotal Stotal

S (T, Va + Vg, Na) + SU (T, Vs + Vi, Ni)
_51(40) (T7 VAaNA) - Sg)) (T7 VBaNB)

— AS

irreversible process, mixing entropy




If A and B same gas:

same as before

but now S¢\ = S (T, Va, +V5, Na + Np)

— AS = (same as before with distinct gases) > 0
But the process is reversible!

Since quantum mechanically all the atoms are completely
indistinguishable

Classically this is not the case!




We have to mend the classical way of enumeration of the particles

o(E,V,N 1 o(E,V,N
Q(E,V,N) = p )_>N! ( o )

Q: number of microstates

o: hypersurface area

N!:  Gibbs correction

S(E,V,N) Nk {3




Now S is an extensive quantity

|4

. E . . .
since 1 and 5 are intensive in the In(...)

And AS=0 if gas A = gas B

Read yourselves

Pseudo quantum mechanical counting of ()

pp. 135 - 139
and example 5.3 p. 140 - 141
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Conclusion

The thermodynamic properties can be calculated

from the microscopic H

The calculation of




Ensemble theory

e All microstates of the energy surface of a closed system are

equally likely

e For open systems each microstate has a weight p(q,,p.), a
probability for the macro system to reach (q,,p,)

e In a closed system p = 0 outside the energy surface

The phase space density p is normalized

d3qu3Np B
rsv o Pl py) =1




Any observable of the system f(q,,p,) will have a mean value

d3qu3Np
h3N f(qy7pl/)p(QV7p1/)

f could be f. ex. H(q,,p.), L(qu,p.) - - .

An average over a set of identical copies of the system at a fixed time
(f): ensemble average

For a closed system

1

Pmec(qu,Dy) = @5(1? — H(qy,pv))

Pmec: microcanonical ensemble phase space density




We have ignored time ¢!

The hope is that the time average

T b = / dt £(g(£), s (1))

(where the trajectory (q,(t), p,(t)) is determined
by the Hamilton equations)

gives same results as (f)




f and (f) are identical if the phase-space trajectory passes through

each point of the energy surface an equal number of times (Ergodic
hypothesis; Boltzmann 1871)

1D Hamilton operator is such a system (ergodic), but ...

quasi ergodic hypothesis

The phase-space trajectory passes arbitrarily close to each point ...

Unsolved problem taken as an axiom!




Liouville’s theorem

We do not need ¢ for equilibrium thermodynamics,

generally p = p(qu,pu,t)

Elements of phase-space flow like incompressible fluid with ¢
e no points lost or gained

e no crossing of trajectories

% p+V-(pv) =0 (equation of continuity)
4 o
at’ = o

Liouville’s equation. The total ¢ derivative of the

+{p,H} =0

phase space density p vanishes along a phase space trajectory




Lagrange Multipliers

We want to maximize f(x,y), subject to the condition:
g(x,y) = ¢, const.

e must satisty: f, =0, f, =0
Usually, but. ..

we set:
df = fodz + fydy =0

If dxr and dy were independent then we would conclude f, =0,
fy = 0, but they are not because

dg = gzdz + g,dy = 0

SO we have
i
9z Gy




We are not seeking the trivial solution

— ooy Goy = 0

f_w:f_y:
gz 9y

or A has to be const.

Then

Jo =292 =0, fy—Agy =0

g(x,y)=c

A\ 1s a constant to be ad- Contour of f(x,y)
justed so that g(x,y) takes

on the correct value.




Microcanonical ensemble

We want to prove that a constant phase-space density
on the energy surface is the most probable for a system.

Subdivide the energy surface

into equally large surface

elements Ao;

microstates in
identical copies of a closed
system




: probability for microstate ¢ to lie in Aog;

P — m/N

Corresponding to p(q,p,)d>Y ¢d*" p in the continuous formulation

The total number of ways to generate the distribution
{ning ...} = {n;} of the N systems over the surface elements

N1

w{n;} = I, !

N!  ways to enumerate the system differently

n;! exchanges in one cell do not give a new case




The probability of finding a distribution {n;} on the surface

elements

(wi)™

wiot{nit = N! H

)

w;: The probability of finding one system within o;

What is the most probable distribution {n;}* of the N systems
over the phase space cells?




More convenient to use In wiyt and Inn!~nlnn — n for finite

number of cells when N — oo

Inwior = In N+ Z (n; Inw; — Inn,!)

~ NlnN—N—I—Z{ (n;Inw; — (n;Inn; —n;)}

Most probable —

dlnwigr = — Z (Inn; — Inw;)dn; =0

i
but all n; are related since

N = Z n; is constant
i




Use Lagrange multiplier A:

Add MN =X> . dn;, =0
to —> ;(Inn; —Inw;)dn; =0

— Z (Inn; —Ilnw; — A)dn; =0

Consider all dn; now independent

— Inn;, —lnw; —A=0

n; = w;e constant




Basic assumption of statistical physics

All microstates are equally likely I

n; = wie>‘ = constant

Constant phase-space density on the energy surface is the
most probable possibility




H=F

n;
Pi — ——
N otherwise

EFE<H<FE+AFE
— Pmc

otherwise

Read 149 + 150 to see that with

E<H<FE+AE

Pme =

1
Q
0

otherwise




The entropy can be expressed as

S(E,V,N)

dSNq dSNp
/ h3N pmc(QVapl/) {_klnpmc(QVapu>}

< —klnp >




The uncertainty function H = H(p;)

Should only function of the probabilities p; for 2 = 1... possible

outcome of exp
[l when the outcome is certain H = 0

[1 order of independent experiments does not matter

[ if all p; are equal the outcome has max uncertainty

H = H, .« for all p; equal

[ if experiments I and II are independent then
H(I and II)=H(I)+ H(II)

for example I has sure outcome H(I) =0




It can now be proven uniquely that

H = — sz'lnpi

Many microstates larger entropy and uncertainty

Example

N classical distinguishable 1D H.O’s. with frequency w in the

microcanonical ensemble

1
QE,V.,N) = —
(B, V. N) hN /E§H§E+AE

dN qd™ p




but it is convenient to find first

1

E,V.N) = — dNqd™p, (corresponding to w
W Ju<p

No Gibbs factor <+ distinguishability

Description of H.O. at certain sites in space ... crystal lattice ...

N p2 1 )
Hiap) =Y { 22+ S mta, |

v=1




With the substitution x, = mwq,

1 1\ NN
Z(E,V,N): ~ d xd"p
h? \ mw SN (p2+a22)<2mE

an integral over a 2N —dim sphere with radius v2mFE

- Y (B, V,N) = (2mE)"




The mean number of states per energy interval

g(E,V,N) corresponds to o




InI'(N)~NInN — N

S(E, V,N)=kInQ2 = kln {(i

hw

< wefn(E) 1w
fron(5)

ratio of the total energy /N and

the oscillator energy hw,




0S
OE lv,N
0S
oV BN

1
= Nk = —+ E = NkT
7

=0 —p=20

Oscillators fixed in space — p =0

_ﬁ_(a_s) _Mn{ e }
T ON BV N hw

Chemical potential
E
= —kTIn —
. . { N hw }

oF
C_a_T_Nk

Heat capacity




The Canonical Ensemble

Microcanonical ensemble can be used for all systems, but ...

Sometimes we want to describe only a subsystem, open system w.r.t.
heat transfer

heat bath
Er,T system S
Es, T

Read p. 159-160: Classical arguments comparing system sizes gives:

exp (— )

Di =

as the probability for system S to be in microstate ¢




Here we follow ensemble theory

Es is not fixed — all points in phase-space can be occupied
[J Subdivide phase-space into equally sized cells Aw;
[J There are n; systems in Aw;

0 N systems in the ensemble
— N — Z T,
i

0 p; = n; /N is the probability for the microstate ¢ in the ensemble

[1 All possible energies E; can be assumed with the probability p;




But in equilibrium there must be certain mean energy U

There are thus two conditions on the distribution this time

(*)

The probability of the distribution {n;} is as in the microcanonical
ensemble (Aw; is not a surface element here)




(w;i)™

We have to find the most probable distribution {n;}* subject to (*)

InW{n;} = Nln-N — Z{(nz‘ Inn; —n;) —n;Inw;}

Due to (*) we need two Lagrange parameters

dinW =-) {lnn; —Inw; — A+ BE;} dn; =0




Now dn; are independent

— Inn;, = A+lnw; —BE;

or n; = wz-e)‘e_BE"

for equally sized phase-space cells all w; must be equal (the

probability to find one system in Aw;)

Tn; wieAe_BEi

P: IV _BE.
‘ N wier Y . e FE

GXp(—BEZ')
Zj e—BE;




we still have to fix 5 ...

Introduce the canonical partition function

Z = Z e PEi

In the continuous notation we have

1
7 — TSN d3qu3Np exp{—06H(q,,p,)}

exp {_/BH(QI/)pV)}
A

pC(Ql/aPV) =




The entropy is the ensemble average of —k In p,

1
<—]€111 pc> == h3—N dw pc(QVapy) ) {_klnpc((_b/apv)}

1
h3—N dwpc((luapu) {k/BH(ql/)pV) +kan}

kB (H) +kln Z
kBU + k1n Z




Obviously 8 = B(U) (see (**))

1 85 8B 0
T~ ou oy TRt 5y F1n2)




But in addition we have

S EBU + klnZ

kU
k—T -|—k1nZ

—kT' InZ
F(T,V,N)

with F' the free energy of the system

micro — macro, convenience ...

is equivalent to

F(T,V,N) = —kT'In Z(T,V, N)

S(E,V,N) = klnQ(E, N, V)

in the micro canonical ensemble




Gibbs correction
Read p. 164-166

Generally if the Hamiltonian is invariant under enumeration of the

generalized coordinates then

dSquSNp
N1 R3N

Zna(T,V,N) =

exp{—GBH }

non-distinguishable

Example: The ideal gas in the canonical ensemble

system in contact with a heat bath




with Gibbs factor the partition function is

1
Z<T’V’N):Nlh3N /dSqu?)NpeXp{_ﬁH(QVapV)}

H = H(p,) only. Use exp{) . a;} = ][, exp{a;}, then

3N
1 O
Z(TavaN):N'hg,N VNH/ dpueXP{_B -
v=1 Y~

VN <2m)3N/2 3N 00 5

—X

NIR3N -\ 3

— — 00

Since we used x = % Dy




giving

Z(T,V,N) = N
Use the thermal wavelength to get

A

Z(T,V,N)

Using Stirlings formula the free energy is

F(T,V,N) —kTn Z(T,V,N)

rfren()




and the thermodynamic properties follow

OF
VTN

OF
OT lvN

OF
ONIrv

NkT

i lZm{N‘;H

v
—len{N)\3}




The internal energy U of the system is

and can be used to replace the 1" in 5"

5 V [ ArmU\ /2
S(U,V,N) = Nk §—|—ln{N(3h2N> H

same as in the microcanonical ensemble!

e F' and S are equivalent thermodynamic potentials related by a

legrende transformation

Later, we come back to this issue

Read Exercises 7.2 4+ 7.3 about the ultrarelativistic gas and the
H.O’s.




Noninteracting particles

If the Hamiltonian satisfies
N

H(gi...qsn,p1---psn) = Y h(qw,py)

v=1
then

1
N!h3N

1

Z(T,V, N) / 43N qd®Np exp{—BH(gy,p,)}

N
NIR3N H /dgq,/d?’p,/ exp{_ﬁh(%upu)}
. v=1

1 N
m {Z(T7 Va 1)}

where
1

Z(T,V,1) = > /d3qd3p exp{—0Bh(q,p)}

is the partition function of a one particle system.




In an analogous way one often introduces (p. 171, read justification)

exp{—0Bh(q,p)}
Z(T,V,1)

pi(g,p) =

Velocity in an ideal gas

p(q,p)




The probability density for finding any particle in the one-particle
phase-space with p and q

Z(T,V,1) = %

independent particles: No correlation between ¢ and p and
position and momenta of other particles

interacting ¢, and p, are correlated

The probability of finding a particle with p between p and p + dp

and q and q + dq is
1
P - dqugpﬁ




implying

d>p
h3
3

m
ﬁd?’v/d?’qp(q,p)

d°q p(q,p)

3 3 2
m° 4 g A” _ pmu
—hsdv/dqvexp{ 5 }

normalization with dp or dv to 1




f(V)d*v = dPw(v)

is the probability to find a particle with v between (v, v,,v,) and
(vg + dvg, vy + dvy, v, + dv,)
find the probability for |v| € (|v|, |v + dv])

l'v| = polar coordinates

integrate q out (has been done)

2

dw(v) = (2£T)3/2exp{—5"g” }47T’l)2dv

Maxwell’s velocity distribution

Most probable speed v* corresponds to

_dw

F(v)—%




taking a maximum

t (
AT 2wkT

m )3/2 —ﬁe mu W muv> 5 _ 0
T P\ T Y TP T ..

The mean speed

8kT
mi

(|v|) = / F(v)vdv =
0
The mean square speed

o° T
/ F(v 2de = el
0 m

m (v?) = —kT

1
2 2




Read Example 7.6:

Velocity distribution of an evaporating gas
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Observables as ensemble averages

The phase-space density p(r;, p;) containes all information about the

system, for example

S = (—klnp)
and all thermodynamics follows.

But also

p(ri...rx, P1---Py,) = (BN ]| d(ri —r)o(pi — p)))
i=1




The phase-space distribution for particle ¢ in an ensemble of

distinguishable particles is

pi(r,p) = (h*6(r; — 1)6(p; — P))

If there is no interaction then
pi(r,p) is identical with
p(r1,p1) single-particle distribution




Total particle density




Relative distance of two particles

Two particle correlation function

fir(r) = (0(r — [r; — r4]))

gives the mean distance of ¢+ and k
(rie) = (lri —rz))

</0oo r8 (r — i — v |)dr)

/Ooo r{d (r — |r; —rgl|))dr

/OO r fix(r)dr
0

liquide, gas, solide, ...




Test on an ideal gas

N exp |~ P
Nz v

1=1

N
NI ] pi(r1, p1)
i=1

where p; is the phase-space distribution for particle ¢, and

_i/d bt _V
BN A T B







So we have

as expected !!




Example: The law of atmospheres

z

A

e Air column
e N: atoms

e Constant gravity

find p(2)




exp{ 5h r27p’b)}
N H Z(T,V,1)

N! H Pz‘(rz‘,Pz‘)

i=1
One-particle partition function

1 2

Z(T,V,1) 3 d>p exp (—i%) / d°r exp(—Bmgz)

1
)\3

A - /dz exp(—pmgz)

A
BmgA>




Use the definition of a single-particle density

1
pi(r) = N!hSN/dwp(rl...,pl...)d(ri—r)

1

N
13N dw H Pr(Tk, Pr)O(r; — )

k=1

All integrals of pi(rx, px) yield 1 expect the integral over r;, p;,




Bmg\ / B oen | PP
Ah3 S 2m

[ o gt~

6,4g / d’r; exp {—pmgz} d(r; —r)

6729 exp {—fmgz}




Thus for N atoms (independent)

p(r) = Nimg exp{—pBmgz}

For an ideal gas we have

_ NkT

p 7 p p/B

and thus the pressure is

p(z) = NZIQ exp{—pBmgz}

= p(0) exp{—Bmgz}
with the pressure p(0) = % at the surface!

Is the assumption about constant gravity important here? Is it ok?




Connection between microcanonical and canonical ensembles

The probability of finding a system of the canonical ensemble in
microstate (q,,p,) is

1 1 _
dp = 13N p(qu, py)dw = P3N e BH(@v.pv) g,

It is constant on the H(q,,p,) = E surface

— probability of finding the system with energy between E and
E+ AFE

exp{—BE}
Z h3N E<H<E4+AE

dp(E) = dw

Easier to calculate the volume

Y (B,V,N) =




1 )
— dw = — dFE = g(F)dFE
N Jp<H<B4AE OF 9(E)

g(F) is the density of states, (many-particle)

1
z?
p(E

~  dp(E) 9(E) exp{—BE}dE

JAE

In the same way we have

1
Z(T,V,N) v | dw exp{-PfH(q,p)}

/ dE g(E) exp{—BE}




in discrete systems (i.e. quantum)

9(FE) = gg gg : degeneracy factor

is a Laplace transform

g(E) = 48 PP 2(B)

27'('7/ B’ —ico

Direct connection between g(F), (i.e. 2), and Z(F)

g: microcanonical ... (used in both...); Z: canonical

Read Example 7.11 and Exercise 7.12




Fluctuations

The probability to find a canonical system at 7' and F




_>

g OE | B~

but Q = gAE and 228E =

OF
AE 1 01 ~ 0lnQ
(0 AE OEle-  OE |E
1
kT
1
T




The most probable energy E* of the canonical
ensemble is equal to E, the fixed energy of the

microcanonical ensemble

We check the mean value

(E)

now F =—-kTInZ and ﬁ:%




G,
U=+33
OF
BT
F+TS

(F) is also identical to Ey of the microcanonical ensemble

+

The mean value (F) is the most probable value E*

The distribution p.(F) is sharply peaked at this value
Standard deviation

(E?) - (E)?

kT*Cy




Relative width

o

(E)

but U ~ N and Cyy ~ N




Virial theorem and equipartition theorem

Consider H(q,,p.)

rename (qy,Py) — T; i=1...6N

o Oy 1
xZ@xk - h3N

8H
6N ,
A’ x p(X) x; A

now select

for integration by parts




the first terms vanishes
e if ;. is momentum — FE;yp — 00
min

for Tt — —00 and T % — 00

e if ;. is spatial coordinate: V' — oo at walls

and [ d,f;vN —BH — 7

% = G kT




Hamilton’s equations

if

In the mean each degree of freedom of the system at
T has the thermal energy %kT




Few examples of Boltzmann’s statistics
N quantum mechanical harmonic oscillators

Energy of a single one

1
€n = hw (n—|—§>, n=20,1,...

Here, instead of a classical phase-space density

G_Ben
Pn =
Z(T,V,1)

Z(T,V,1) =) e Pen

n

Pn: is the probability for an h.o. to be in a quantum state n




Independent oscillators

—  Z(T,V,N)={Z(T,V,1)}*

Assume the h.o. to be distinguishable
Z(T,V,1) = > exp{—Ben}




o anvn - faan ()}

F(T,V,N) —kT InZ(T,V,N)
hw —Bhw
N [7+len{1—e B }}

1 zero point energy

< as before




The entropy is

thi T ln{l — G_Bh“’}]

and the internal energy

1 1

Independent harmonic oscillators

— U = N{ep)




1

is the mean quantum number at T

For N classical oscillators the equipartion theorem gives

Ug = NET

obviously not true in the quantum case!




ButasT%oo,Bhw:Z—ﬁ‘,‘iAO

but here

o
oT

N,V
U/(Nho) , P
NE(Bhw) (P — 1)

Cy

classical limit

QM

Classical

KT/(hw)

classical C¢ = C’Z‘jl = Nk KT/(hw)




For low T' the thermal energy kT < hw has a very small possiblility
to excite a h.o. because of the discreteness of the levels

Paramagnetism, (classical)

N
EZ_ZM"H
=i

[; :  magnetic momentum .
External H aligns the momenta

H: external magnetic field 0 energy disaligns them

(maximum entropy), H= HZ




2 a8 = [don [d0s .. [ oy e {M S 9}

1=1

since w; - H = u,H, = nH cos 0,

Z(T,H,1) /dQ exp{BuH cos 6}

1
27r/ dr exp{SuHzx}

i
sinh(BuH )
puH

41




The probability for the dipole to assume an orientation between
0,0 + df and ¢, + dy is

eﬁ,uH cos 6

Z(T, H,1)

p(0, p)dS2 = sin 6dfdy

p in same coordinates, (6, @), p = p<

— the mean magnetic moment in

Cartesian coordinates is

sin 0 cos ¢
/ sin @ sin ¢ ePHH cos 0 gip) 0dOdyp

cos 6




p-integration —  (uz) = (uy) = 0, left is

cos 0e’H<°9 gin 0dOd

[
/ dz P12 g da (g)
%

ol
Z

1

coth(BuH) — BM—H}

(Dz) = N{uz) = NpL (BuH)

Langevin function




Polarization, magnetization
<Dz >/(NH)

#

1

> HI(KT)

linear with H for

constant 1" for small H

with the susceptibility

x = lim 0(Dz)
H—0 OH
_ Np* C
- 3kT T
Curies law with Curie constant

C

OF

- oT
H,N

NklIn {47r sinh @ }

i

S(T,H,N)




T — oo thus z— 0
U~0 OH—>O

The external field can not align the dipoles at high temperature
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Density operators

Eq. of motion for a system with /N particles

A

thoy¥(ry...rN,t) = H(r;,p,)¥(ry...7N,t)

Stationary states with definite energy

fI\I!E(rl...rN):E\IIE(’H---"“N)

A

Observable is an operator f(#;,p,;) with eigenfunctions and values

fér=fo;

each eigenvalue has the probability

(D¢ |‘I’%)> microstate i




and the q.m. average of all measurements is
(O | F125) = (f)
But often the microstate is uncertain

= (N = p(ERIFIEE) )

where p; is the probability of state \I!g)

In general we need

(Fy=3" pra (2D | fl el
1k

as can be seen by using

k

in (%)




> ki (Gl flow)
1k

> (brlpldi) (sl flow)

ik

> (¢klpflon)=Tu(p )
k
T’ is independent of basis

p is the density operator, p;r the matrix elements of the density

matrix

p;r are basis dependent, can be diagonal




Pure and mixed states
If a system is described by a state vector |¥(9)) it is in a pure state

If it is any of several different |¥(¥)) with probability p; it is in a

mixed state

p=> br) pro (ol
kK’

which for a pure state reduces to the projection operator

pPUTe = ) (3|




Hermitian pt =p, T,p=1
and for a pure state p? = p

Equation of motion (von Neumann, Liouville ...

The density operators of quantum statistics
Microcanonical
Stationary ensemble [H,p] =0

Use energy eigenvalues

—  diagonal e s e



E<E,<E+AFE

otherwise

§(H—FE-I)
Tr{§(H — E-1)}

Canonical
In the energy representation

b = exp{—0BE,}
" >, exp{—BE,}

Z(T,V,N) = Z eXp{_ﬁEn}

exp{—BH}

~ 7 Tr(exp(-pE})




Tr(exp{—BH}f)
Tr(exp{—BH})

(f) = Tr(pf) =

Tr(exp{—ﬁﬁ}f[)

Tr(exp{—BH})
1,

~ 38 In (Tr exp{—ﬁH})
0
= 35 M ATV

as in the classical case and

F=U-TS=—kT In {Tfr(exp{—[ﬂ:[})}




Grand canonical

. exp{—B(H — uN)}
. )

Tr(exp{—B(H — uN)})

Z(T,V, u) = Tr(exp{—B(H — uN)})

But we still have to analyze the states with respect to particle
distinguishability . ..




The symmetry of many particle wavefunctions

quantum theory
like particles are not to distinguish (wavefunctions, probability)

Particle exchange operator

A

Pik\I}(’l”l...’l"i...’l"k...

(change in the enumeration)

Quantum H are invariant under change in the enumeration

for all i,k=1...N with ¢ #£ k




H and P have common eigenfunctions

=U(...r...7;... AV(...ri ... ...

NU( . .r. T

—~ X =1 and )\ isreal

symmetric wave function
thus A =+£1

antisymmetric . . .
Generally “the permutation” operator

PY(ri,ry...vrN)=Y(rp,rp,...Tpy)

where P; ... Py are permutationsof 1... N




If H commutes with all P;s or equivalently with P the energy

eigenfunctions can be constructed completely symmetric or

antisymmetric

> . p sum over all permutations P; ... Py of the indices 1...N.

+1 even permutation

—1 odd permutation

A and B are normalization constants




Symmetric: bosons integer spin

Antisymmetric: fermions half integer spin

!

experimental fact
(causality ... )

Non-interacting system

A

Hry...rN,p1---Pn,) =

A

hér(r) = ex o (T)

(only for noninteracting)




is the energy of the many-particle wavefunction

N
Uiy (P1eorn) = 1] ¢ (r) ™
i=1

In Dirac notation the state *) is

Ky . o) = ) o) ... [en)

+  here

particle 1 is in state kq




B Lo Gl L) | B

<
(k1 | K1) ... (kv | k)

5K, — k1) ...8(ky — kn)

Completeness relation

L= > J|ki...kn)(kr...kn|
kl...kl

Arbitrary wavefunction, also interacting, can be expanded in




The wavefunction

‘IlflkN (r1...7N)

has no clear symmetry




Thus we can form

S,E
Uk (P17

AE
PR ( ST Y9

{One can either permute k;... or r;... }

( Pk, (r1) ... Pr(TN) \
1 . )
— det ) :

VN!

\ Cka (rl) s Qka (TN) )

Slater determinant




Pauli principle obvious, and thus the normalization

In case of bosons k; is occupied by n; bosons




It can now be shown (p. 290 - 292)

Read example 11.2 ideal gas

A,S<

A,S

T1T2|p|T1T2)

bosons bunch together

but fermions avoid one another,



Ideal quantum systems
Grand canonical description

The canonical partition function is

Z(T,V,N) = Tr(exp{—ﬁﬁ })

1

< > FMky .. ky|exp{—BH}|ky .. kn)>A

ki...kn

T'r within any basis, but energy eigenstates are convenient H

N
Hlky...kn)S4 = Elky .. kn)S4, E=)  a,
1=1

no interaction




MB — Maxwell Boltzmann
We consider 3 cases FD — Fermi-Dirac

BE — Bose-Einstein

In the MB-case the wavefunction is a simple multiplication of

single-particle wavefunctions, or

Ky ky) = k1) .. Jen)

ZMB(T,V,N) 11 D kil exp{—Bhi} k)
.

S
Z T 1)]

2, 18 superfluous




A fully symmetrized or antisymmetrized state is completely

specified by occupation of the single-particle states n; ...

so instead of |k; ... kn)>* labeling the state k; of particle i (finite
vector dim )
we use |ni ng...) (infinite dim) specifying the occupation of state i

© @) © @)
E n; — N ; E = E Nk€Eg

and similarily




S,A

Ng|ning ...) = ng|ning...)

0,1 FD

ne —
0,1,2,... BE

{nins ...} + symmetry specifies one microstate of the system

The occupation states are orthonomal




S,A< S,A

1 S,A<
Z(T,V,N)

1
Z(T,V,N)

o0
exp{—_3 Z NEEL | On! nyOnlng - - -
k=1

/

Z(T,V,N) =) exp{—8 )  npex}
{ni} k=1

/ .
> means the constraint

{nx} each set is one microstate

i ni =N
k=1

n'nh...|exp{—BH}|nins ...



The diagonal element of the density matrix

is the probability of finding the special set {n} of occupation

numbers in the system

(The probability of that microstate)




Analogously the matrix element of the grand canonical density op. is

S,A< >S,A

1 S, A
Z(T,V,p)

1 O
expi — [ nk(€k — 1) ¢ OntnyOning - - -
2.V P 2 }

(nin, ...|exp{ —B(ﬁ—uN)}|n1n2 L )oA




0,1,2...

But here is no constraint on N

(grand canonical ... particle reservoir)




since z = eM/kT =
N = Zkz:l ng




> 2.
N=0 {ny}

is simly the sum over all sets of occupation numbers without a
constraint

T

Makes the grand canonical en-

semble very good for calculation

In this thermodynamic limit the GE is anyway a good description

(but small systems!!)




And again

>S,A

P{ng} SA(niny .. |ﬁ|n1n2

—exp{ anek— }

is the probability of finding the special set {ng} in the system

Now we can unify the handeling of the 3-cases with different statistics

The MB-case reminds us of where quantum properties are important

The contrast




MB

e {ninsy ...} does not uniquely determine the state |k;...kn)

corresponding to a simple product wavefunction
{nins ...} no information about which particle is in which state

All product states compatible to the set {nins...} have
same energy and probability

There are N! ways to permute the particles

If there are ny in state |k)

— ng! permutations give no new

classical microstate

—  weight ({n1n2 . }) —

’I’Ll'ng'




1 - NI o
N! Z nilna! ... eXp{—ﬁanek}
{ni} k=1

(% was added by hand here )

N

% Z il (exp{—ﬁel})nl(exp{—5€2})

n2

nl!ng! ..
nan...ZO

. (Z exp{—/sek}>

|z@,v)] :




—  The statistical weight of the set of occupation numbers
{ning ...} is

1
77,1!77,2! “e

g MBin) =

and for bosons

g =1

and Fermions

1 Ifall n. =0or1

0 otherwise




The three cases can be treated concurrently in the canonical ensemble

/

Z(T,V,N) = Z g{ng} exp{ —f i nkek}

{nk} k 1

or in the grand canonical ensemble

o

Z(T,V,p) = Y g{nx} eXp{ B niler — M)}

{ni} k=1




The probability for a {ny} in the canonical ensemble is

P{ny} = %g{nk}exp{ —f i nkek}

k=1

and in the grand canonical ensemble




Now the expressions can be simplified in the grand canonical case for

bosons and Fermions

The canonical expressions can only
be simplified for MB Statistics

/]\

due to the constraint

N = i (2%
k=1




but now

with 2 = e PH




FD

Here the sum is only over two terms n, = 0, 1

o | ZFD =1 (1 4 zeBe)

and M B-particles have

ZMB T,V i) H exp{ze_ﬁe’“}

In principle the canonical ensemble partition
functions can be derived from Z, but the inte-
grals are difficult

In the thermodynamic limit all the ensembles give the same results




The grand canonical potential is

O(T,V,pu) = kT In Z(T,V, )




It is possible to unify the notation for the potential

i 1 + aze_ﬁe’“)




g
T 21 z)
ou N

o

1
Z z—leBer + q

k=1

0
9B

O

€k

k=1

an‘




It can now be shown by considering

AN A

(N) = T,(pN) and  (H)

k=1 k=1
where 1y is the occupation operator for the one-particle state and its

average 18

1
z—leber + q
1
z—le{ﬁ(ek—ﬂ)} + a

(k)




2 0 > 5 X

The graph of (ny) is difficult to interprete since x is not a simple

variable

(€x — )
kT

and p is a function of 1" also




But since (ny) diverges for bosons when x = 0, it is clear that

1< € for bosons

for fermions at “constant p”
<n k>




If 7" = 0 then all levels with ¢, > u are empty
and u = e the energy needed to add one fermion to the system

er ~ i can be much larger than KT

In metals kTr = ep gives Ty ~ 10° K

— electron gas is degenerated, cold at room temperature

Excitations for fermions with kT < ep are just around € ~ u
Excitations at the fermi surface

Fluctuations

2

O'nk

(k)2 ()

gives the expected value in the MB-case




small fluctuations

stiff system due to the Pauli principle

large fluctuations

advantageous since particle bunch momentarly

together
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The Bose condensation starts when

N3
- =¢63/2)

thus there is a critical temperature

Ny 2/3 h?
7= () 2mm {¢(3/2)}°

below which Bose-condensation occures

Now the expression N™** = ¥: ( (3/2) can be used to express the

occupation fractions in terms of 7" and 7 i.e.:

1 if =<({(3/2) ie. N < NMeX

r>((3/2) ie. N > NMax







Later we introduce critical

exponents at phase transitions.

Here we have

Ne <T>3/2

1.

N




In a finite system the kink at T'/T. = 1 does not exist

Pressure
pV = kT (T, V,2)

kT kT

— b= F95/2(z> v In(1 - 2)

Thermodynamic limit

In(1 — 2)
|4

it 2<1 — 0

Before we saw that when z ~ 1 then




N+1-N

- 1 —z= ~
© N+1 N+1

—In(1 — In N
n( z)Nn__>O

- v Ty

Since V, N — oo, but % — const

Particle in the ¢ = 0 state with no kinetic energy do not

contribute to pressure




kT
— p= bl 95/2(Z) (*)

For T' < T, z=1
kT

and P=3 (5/2)

independent of V and N !

if a particle is added to the system (7' < T¢) it has to go to the e = 0
state




Volume decreases = more bosons get to the e = 0 state

We had a critical density

¢ (3/2)
G

which can be reinterpreted as

N3
=tem 2

a critical volume below which the condensation starts

A phase transition in momentum space not in coordinate space as a

liquid-vapor transition




A phase transition in momentum space not in coordinate space as a

liquid-vapor transition

(1) and (2) can be combined to give

h? ((5/2)N5/3
T (¢(3/2))

pVCE’/ ® = const =




3
For x = N‘i‘ < 1 one gets

pV - _
NT = 2 4t
(=1




Internal energy

—i In Z

8[3 z,V

v
= kT 13 95/2(Z)

2 A

together with (*) yields

for all z’s

3 3 vV
U= §pV — §kTﬁg5/2(z)




forT<T, z=1

v _ 1ov
Nk Nk OT Inyv
—C(5/2)

for T >T, now Ng=~0

Cv 15 g5 /2(2)
Nk 4 93/2(2)

LA
NX3







Ideal Fermi Gas

q(T,V,z) =InZ = Z In(1 + ze Per)
k

N(T,V,z) = Z(nk> = Z Z_1eﬁlek +1

k k
All values of z: 0 < 2 < 0

Large system

q(T,V,z2)

N(T,V,z)




o(6) = 9 7y (2m)*/? Ve

g =2s+1 spin degeneracy factor

1 o0 xn_ldiﬁ
fn(z) — m /O 2—ler 11

q(T,V,2)

N(T,V,z)




fn(z) can be expanded as

k

fle) =3 (DM

k=1

(valid for small z)
and there is a useful recursion formula

S0 =~ faa(2)

In a Fermi system with Pauli exclusion p is often high, and

— B — {ﬂ}
— z=e€ exp T

z —wo00asT — 0




Then it is helpful to introduce y = Su and consider y — oo

11
z7lefe +1 ey 41

with = = (e

1 as <y and y— o0
%

0 as x>y and Yy — o0
— Oy —x)

unit step function

O (y—Xx)




Define
Fn(y) — F(n)fn(z) — P(n)fn(y)
Sommerfeld found (1928)

F(Z?)C(Z?) (1 _ 92j—1

A low temperature expansion (works in 3D)

for n = %, %, g ... the expansion is good.




=

for 2«1 fn(z) ~ 2

and the Sommerfeld expansion shows that

1 n
fn(z):(nf) , for z>1
n!




Thermodynamic of the Fermi gas

) )
——12 —kT2—1Z
a8 o~ lpv

§7€T 5 [5/2(2)

f%/z(z)

——DJk
Iﬁfﬁ/z(z)

gg;;jg/Q(z) is used .




The classical limit

small density

high T

U — gNkT

U

y
°5 fa2(2)

KT ~ 3kT/2

" P=3y

In general for all non-relativistic gases




Furthermore
Cv _ 15 f5/2(2) 9 f3/2(2)
Nk 4 f372(2) 4 f1/2(2)

yielding the classical limit as 2 — 0

The virial expansion of the equation of state is:

V.

— Z (_1)6_10/6336_1
NKkT —

X NN

€T = -
guv gV

and a, are just the same as in the boson case



Degenerate Fermi gas

In many Fermi systems p > KT' at room temperature

— T =~ 0 can be used







mean energy per particle

And thus

U U 4ll incease with n = &

€fr v N




Eyin grows with

N _
Define from v =

Coulomb interaction ~ Ti

— as rs < 1, largen

Ekin > Eint

Coulomb interaction becomes unimportant at high density




We can check next order corrections by (z > 1)

f%/2(z)

f§/2(2)

,f1/2(2)




N g drg (2m\>/?
v - ﬁf?)m(z)2 3 (h2> (kT'1n z)3/2

.{1—|—%2(lnz)_2—|— }

We want to extract here an expression for z
(use here the 0"*-order for {---})

om !

3N 2/3 h2
4gV

El'Inz =pu= (




)
(kTn
2)3/2
{1 i ﬂ; (k(zlfT)2
map

h2

h2 )3/2

(kT

|

1rlz)3/2

1—|—7T—2
(5
7)
‘. }
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Pauli paramagnetism

N electrons in a metal with magnetic moment

d, =yupm

1 eh

m=%£5 . ¥=2 , MB=

~v can be quite different in materials

2me

Neglect the influence of the magnetic field on the wavefunctions!!

Limits to small B

2
e—p——dzB

- 2m




1+ chemical potential
of the free Fermi gas

equilibrium:
— g (N4) = p—(N-)

and




We know the function for u from

N
f3/2( ):V)\B 3 z=etP

The total magnetic moment is

(D2) = pB(Ny — N-)

and the susceptibility




For KT > ey

X =~ Xoo (1

Xoo =

For kT < ey
True for metals at room temperature and lower (weak 7" dependence)

{ 2 (k )2}
X >~ X041
€f




Landau diamagnetism
Diamagnetism of metals
B induces circular current opposing the external magnetic field

Landau levels

€ =€jM T €,

GjM

EZ
2m

€;n: the M-states are all (infinite) degenerate




eB_L2

g — V2/3 _
J he €2B

(% : magnetic length

1/3 o0 o
InZ = Vh / dpngjln
>0 j

0

+2upB(j + %))}

The replacement w. — pp can not be done in materials where the

electrons have an effective mass m* # m




The chemical potential can be found from

N VR | 1
- h /— - z—lexp{ﬁ(;i+2MBB(J‘+§))}+1

1 O
D — — InZ
(D) B@Bn ZV,T

1
9 (
QN,UB

; ) , € >kT > upB
f




For a metal

Ifm*£mll ...
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